Login   |   Regist
Species Reference
Actinobacillus succinogenes Metab Eng. 2008 Jan;10(1):55-68. 13C-metabolic flux analysis of Actinobacillus succinogenes fermentative metabolism at different NaHCO3 and H2 concentrations. McKinlay JB, Vieille C.
Actinobacillus succinogenes
  • Metab Eng. 2007 Mar;9(2):177-92. Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of 13C-labeled metabolic product isotopomers. McKinlay JB, Shachar-Hill Y, Zeikus JG, et al.
  • Click here to see download links

  • Metab Eng. 2008 Jan;10(1):55-68. 13C-metabolic flux analysis of Actinobacillus succinogenes fermentative metabolism at different NaHCO3 and H2 concentrations. McKinlay JB, Vieille C.
  • Click here to see download links

Agrobacterium tumefaciens J Bacteriol. 2005 Mar;187(5):1581-90. Experimental identification and quantification of glucose metabolism in seven bacterial species. Fuhrer T, Fischer E, Sauer U.
Agrobacterium tumefaciens
  • J Bacteriol. 2005 Mar;187(5):1581-90. Experimental identification and quantification of glucose metabolism in seven bacterial species. Fuhrer T, Fischer E, Sauer U.
  • Click here to see download links

Arthrobacter sp J Biotechnol. 2013 Dec;168(4):355-61. Metabolic flux analysis of Arthrobacter sp. CGMCC 3584 for cAMP production based on 13C tracer experiments and gas chromatography-mass spectrometry. Niu H, Chen Y, Yao S,et al.
Arthrobacter sp
  • J Biotechnol. 2013 Dec;168(4):355-61. Metabolic flux analysis of Arthrobacter sp. CGMCC 3584 for cAMP production based on 13C tracer experiments and gas chromatography-mass spectrometry. Niu H, Chen Y, Yao S,et al.
  • Click here to see download links

Ashbya gossypii J Biosci Bioeng. 2014 Aug 13. pii: S1389-1723(14)00230-8. Comparative metabolic flux analysis of an Ashbya gossypii wild type strain and a high riboflavin-producing mutant strain. Jeong BY, Wittmann C, Kato T, et al.
Ashbya gossypii
  • J Biosci Bioeng. 2014 Aug 13. pii: S1389-1723(14)00230-8. Comparative metabolic flux analysis of an Ashbya gossypii wild type strain and a high riboflavin-producing mutant strain. Jeong BY, Wittmann C, Kato T, et al.
  • Click here to see download links

Aspergillus nidulans PLoS One. 2008 3(12):e3847. Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans. Panagiotou G, Andersen MR, Grotkjaer T, et al.
Aspergillus nidulans
  • Microbiology. 2005 Jul;151:2209-21. CreA influences the metabolic fluxes of Aspergillus nidulans during growth on glucose and xylose. David H, Krogh AM, Roca C, Akesson M, et al.
  • Click here to see download links

  • PLoS One. 2008 3(12):e3847. Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans. Panagiotou G, Andersen MR, Grotkjaer T, et al.
  • Click here to see download links

Aspergillus niger Metab Eng. 2000 Jan;2(1):34-41. Construction and characterization of an oxalic acid nonproducing strain of Aspergillus niger. Pedersen H, Christensen B, Hjort C, et al.
Aspergillus niger
  • Metab Eng. 2000 Jan;2(1):34-41. Construction and characterization of an oxalic acid nonproducing strain of Aspergillus niger. Pedersen H, Christensen B, Hjort C, et al.
  • Click here to see download links

  • Metab Eng. 2012 Jan;14(1):47-58. Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production. Driouch H, Melzer G, Wittmann C.
  • Click here to see download links

Bacillus megaterium J Biotechnol. 2007 Dec;132(4):385-94. Effect of different carbon sources on central metabolic fluxes and the recombinant production of a hydrolase from Thermobifida fusca in Bacillus megaterium. Furch T, Wittmann C, Wang W, et al.
Bacillus megaterium
  • Bioprocess Biosyst Eng. 2007 Jan;30(1):47-59. Comparative study on central metabolic fluxes of Bacillus megaterium strains in continuous culture using 13C labelled substrates. Furch T, Hollmann R, Wittmann C, et al.
  • Click here to see download links

  • J Biotechnol. 2007 Dec;132(4):385-94. Effect of different carbon sources on central metabolic fluxes and the recombinant production of a hydrolase from Thermobifida fusca in Bacillus megaterium. Furch T, Wittmann C, Wang W, et al.
  • Click here to see download links

Bacillus subtilis BMC Syst Biol. 2008 Mar;2:29. Hybrid optimization for 13C metabolic flux analysis using systems parametrized by compactification. Yang TH, Frick O, Heinzle E.
Bacillus subtilis
  • BMC Syst Biol. 2008 Mar;2:29. Hybrid optimization for 13C metabolic flux analysis using systems parametrized by compactification. Yang TH, Frick O, Heinzle E.
  • Click here to see download links

  • Biotechnol Bioeng. 2001 Sep;76(2):144-56. Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Dauner M, Bailey JE, Sauer U.
  • Click here to see download links

  • Biotechnol Bioeng. 2012 Mar;109(3):763-71. Collisional fragmentation of central carbon metabolites in LC-MS/MS increases precision of 13 C metabolic flux analysis. Ruhl M, Rupp B, Noh K, et al.
  • Click here to see download links

  • Biotechnol Prog. 2000 Mar-Apr;16(2):169-75. 13C NMR evidence for pyruvate kinase flux attenuation underlying suppressed acid formation in Bacillus subtilis. Phalakornkule C, Fry B, Zhu T, et al.
  • Click here to see download links

  • J Bacteriol. 2005 Mar;187(5):1581-90. Experimental identification and quantification of glucose metabolism in seven bacterial species. Fuhrer T, Fischer E, Sauer U.
  • Click here to see download links

  • J Bacteriol. 2008 Sep;190(18):6178-87. CcpN controls central carbon fluxes in Bacillus subtilis. Tannler S, Fischer E, Le Coq D, et al.
  • Click here to see download links

  • J Biol Chem. 2012 Aug;287(33):27959-70. 13C-flux analysis reveals NADPH-balancing transhydrogenation cycles in stationary phase of nitrogen-starving Bacillus subtilis. Ruhl M, Le Coq D, Aymerich S,et al.
  • Click here to see download links

  • Microb Cell Fact. 2008 Jun;7:19. Maintenance metabolism and carbon fluxes in Bacillus species. Tannler S, Decasper S, Sauer U.
  • Click here to see download links

  • Microb Cell Fact. 2014 Mar;13(1):40. Metabolic flux responses to genetic modification for shikimic acid production by Bacillus subtilis strains. Liu DF, Ai GM, Zheng QX, et al.
  • Click here to see download links

  • Mol Syst Biol. 2013 Nov;9:709. Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis. Chubukov V, Uhr M, Le Chat L, et al.
  • Click here to see download links

  • Nat Biotechnol. 1997 May;15(5):448-52. Metabolic fluxes in riboflavin-producing Bacillus subtilis. Sauer U, Hatzimanikatis V, Bailey JE, et al.
  • Click here to see download links

Basfia succiniciproducens Biotechnol Bioeng. 2013 Nov;110(11):3013-23. Systems-wide analysis and engineering of metabolic pathway fluxes in bio-succinate producing Basfia succiniciproducens. Becker J, Reinefeld J, Stellmacher R, et al.
Basfia succiniciproducens
  • Biotechnol Bioeng. 2013 Nov;110(11):3013-23. Systems-wide analysis and engineering of metabolic pathway fluxes in bio-succinate producing Basfia succiniciproducens. Becker J, Reinefeld J, Stellmacher R, et al.
  • Click here to see download links

Chlorobaculum tepidum J Biol Chem. 2010 Dec;285(50):39544-50. Metabolic flux analysis of the mixotrophic metabolisms in the green sulfur bacterium Chlorobaculum tepidum. Feng X, Tang KH, Blankenship RE, et al.
Chlorobaculum tepidum
  • J Biol Chem. 2010 Dec;285(50):39544-50. Metabolic flux analysis of the mixotrophic metabolisms in the green sulfur bacterium Chlorobaculum tepidum. Feng X, Tang KH, Blankenship RE, et al.
  • Click here to see download links

Corynebacterium glutamicum Metab Eng. 2010 Jul;12(4):392-400. 13C metabolic flux analysis for larger scale cultivation using gas chromatography-combustion-isotope ratio mass spectrometry. Yuan Y, Yang TH, Heinzle E.
Corynebacterium glutamicum
  • Adv Biochem Eng Biotechnol. 1996;54:109-54. In vivo stationary flux analysis by 13C labeling experiments. Wiechert W, de Graaf AA.
  • Click here to see download links

  • Appl Environ Microbiol. 2004 Dec;70(12):7277-87. Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Wittmann C, Kiefer P, Zelder O.
  • Click here to see download links

  • Appl Environ Microbiol. 2005 Dec;71(12):8587-96. Amplified expression of fructose ,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Becker J, Klopprogge C, Zelder O, et al.
  • Click here to see download links

  • Appl Environ Microbiol. 2011 Sep;77(18):6644-52. Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum. Bartek T, Blombach B, Lang S, et al.
  • Click here to see download links

  • Biotechnol Bioeng. 1997 Jul;55(1):118-35. Bidirectional reaction steps in metabolic networks: II. Flux estimation and statistical analysis. Wiechert W, Siefke C, de Graaf AA, et al.
  • Click here to see download links

  • Biotechnol Bioeng. 1997 Oct;56(2):168-80. Response of the central metabolism of Corynebacterium glutamicum to different flux burdens. Marx A, Striege K, de Graaf AA, et al.
  • Click here to see download links

  • Biotechnol Bioeng. 2004 Mar;85(5):497-505. Serial flux mapping of Corynebacterium glutamicum during fed-batch L-lysine production using the sensor reactor approach. Drysch A, El Massaoudi M, Wiechert W, et al.
  • Click here to see download links

  • Eur J Biochem. 1998 May;254(1):96-102. Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Dominguez H, Rollin C, Guyonvarch A, et al.
  • Click here to see download links

  • Eur J Biochem. 2001 Apr;268(8):2441-55. Application of MALDI-TOF MS to lysine-producing Corynebacterium glutamicum: a novel approach for metabolic flux analysis. Wittmann C, Heinzle E.
  • Click here to see download links

  • Eur J Biochem. 2003 Sep;270(17):3525-42. Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry. Klapa MI, Aon JC, Stephanopoulos G.
  • Click here to see download links

  • J Bacteriol. 2004 Mar;186(6):1769-84. In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. Kromer JO, Sorgenfrei O, Klopprogge K, et al.
  • Click here to see download links

  • J Biosci Bioeng. 2011 Dec;112(6):595-601. Improving protein secretion of a transglutaminase-secreting Corynebacterium glutamicum recombinant strain on the basis of 13C metabolic flux analysis. Umakoshi M, Hirasawa T, Furusawa C, et al.
  • Click here to see download links

  • Metab Eng. 1999 Jan;1(1):35-48. Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Marx A, Eikmanns BJ, Sahm H, et al.
  • Click here to see download links

  • Metab Eng. 2003 Apr;5(2):96-107. Production process monitoring by serial mapping of microbial carbon flux distributions using a novel Sensor Reactor approach: II--(13)C-labeling-based metabolic flux analysis and L-lysine production. Drysch A, El Massaoudi M, Mack C, et al.
  • Click here to see download links

  • Metab Eng. 2006 Sep;8(5):432-46. Respirometric 13C flux analysis--Part II: in vivo flux estimation of lysine-producing Corynebacterium glutamicum. Hoon Yang T, Wittmann C, Heinzle E.
  • Click here to see download links

  • Metab Eng. 2010 Jul;12(4):392-400. 13C metabolic flux analysis for larger scale cultivation using gas chromatography-combustion-isotope ratio mass spectrometry. Yuan Y, Yang TH, Heinzle E.
  • Click here to see download links

  • Metab Eng. 2014 Jun 19;25C:30-37. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Bommareddy RR, Chen Z, Rappert S, et al.
  • Click here to see download links

  • Microb Cell Fact. 2007 Jun;6:19. Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis. Shirai T, Fujimura K, Furusawa C, et al.
  • Click here to see download links

  • Microb Cell Fact. 2008 Mar;7:8. Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum. Becker J, Klopprogge C, Wittmann C.
  • Click here to see download links

  • Microb Cell Fact. 2009 May;8:25. OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Quek LE, Wittmann C, Nielsen LK, et al.
  • Click here to see download links

  • Microb Cell Fact. 2012 Oct;11:138. Metabolic engineering of the purine biosynthetic pathway in Corynebacterium glutamicum results in increased intracellular pool sizes of IMP and hypoxanthine. Peifer S, Barduhn T, Zimmet S, et al.
  • Click here to see download links

  • Q Rev Biophys. 1998 Feb;31(1):41-106. 13C-NMR, MS and metabolic flux balancing in biotechnology research. Szyperski T.
  • Click here to see download links

Desulfovibrio vulgaris J Bacteriol. 2007 Feb;189(3):940-9. Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris hildenborough using gas chromatography-mass spectrometry and Fourier transform-ion cyclotron resonance mass spectrometry. Tang Y, Pingitore F, Mukhopadhyay A, et al.
Desulfovibrio vulgaris
  • J Bacteriol. 2007 Feb;189(3):940-9. Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris hildenborough using gas chromatography-mass spectrometry and Fourier transform-ion cyclotron resonance mass spectrometry. Tang Y, Pingitore F, Mukhopadhyay A, et al.
  • Click here to see download links

Escherichia coli J Bacteriol. 2008 Apr;190(7):2323-30. Cyclic AMP-dependent catabolite repression is the dominant control mechanism of metabolic fluxes under glucose limitation in Escherichia coli. Nanchen A, Schicker A, Revelles O, et al.
Escherichia coli
  • Anal Biochem. 2004 Feb;325(2):308-16. High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Fischer E, Zamboni N, Sauer U.
  • Click here to see download links

  • Appl Environ Microbiol. 1997 Aug;63(8):3205-10. Reduction of aerobic acetate production by Escherichia coli. Farmer WR, Liao JC.
  • Click here to see download links

  • Appl Environ Microbiol. 2008 Nov;74(22):7002-15. Global transcription and metabolic flux analysis of Escherichia coli in glucose-limited fed-batch cultivations. Lemuth K, Hardiman T, Winter S, et al.
  • Click here to see download links

  • Appl Microbiol Biotechnol. 2004 Jan;63(4):407-17. Metabolic flux analysis of pykF gene knockout Escherichia coli based on 13C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations. Al Zaid Siddiquee K, Arauzo-Bravo MJ, Shimizu K.
  • Click here to see download links

  • Appl Microbiol Biotechnol. 2004 Mar;64(1):91-8. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities. Zhao J, Baba T, Mori H, et al.
  • Click here to see download links

  • BMC Syst Biol. 2010 Sep;4:122. A systematic investigation of Escherichia coli central carbon metabolism in response to superoxide stress. Rui B, Shen T, Zhou H, et al.
  • Click here to see download links

  • Biotechnol Bioeng. 2008 Apr;99(5):1170-85. Metabolic flux analysis in Escherichia coli by integrating isotopic dynamic and isotopic stationary 13C labeling data. Schaub J, Mauch K, Reuss M.
  • Click here to see download links

  • Biotechnol Bioeng. 2014 Jan;111(1):202-8. IsoDesign: a software for optimizing the design of 13C-metabolic flux analysis experiments. Millard P, Sokol S, Letisse F, et al.
  • Click here to see download links

  • Biotechnol Prog. 2004 May-Jun;20(3):706-14. Serial 13C-based flux analysis of an L-phenylalanine-producing E.coli strain using the sensor reactor. Wahl A, El Massaoudi M, Schipper D, et al.
  • Click here to see download links

  • Biotechnol Prog. 2010 Jan-Feb;26(1):1-10. Rapid media transition: an experimental approach for steady state analysis of metabolic pathways. Link H, Anselment B, Weuster-Botz D.
  • Click here to see download links

  • FEMS Microbiol Lett. 2003 Mar;220(2):295-301. Analysis of metabolic and physiological responses to gnd knockout in Escherichia coli by using C-13 tracer experiment and enzyme activity measurement. Jiao Z, Baba T, Mori H, et al.
  • Click here to see download links

  • FEMS Microbiol Lett. 2004 Jun;235(1):17-23. Metabolic flux analysis for a ppc mutant Escherichia coli based on 13C-labelling experiments together with enzyme activity assays and intracellular metabolite measurements. Peng L, Arauzo-Bravo MJ, Shimizu K.
  • Click here to see download links

  • FEMS Microbiol Rev. 1996 Dec;19(2):85-116. Flux analysis and control of the central metabolic pathways in Escherichia coli. Holms H.
  • Click here to see download links

  • J Bacteriol. 2002 Jan;184(1):152-64. Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. Emmerling M, Dauner M, Ponti A, et al.
  • Click here to see download links

  • J Bacteriol. 2003 Dec;185(24):7053-67. Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. Hua Q, Yang C, Baba T, et al.
  • Click here to see download links

  • J Bacteriol. 2005 May;187(9):3171-9. Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. Perrenoud A, Sauer U.
  • Click here to see download links

  • J Bacteriol. 2008 Apr;190(7):2323-30. Cyclic AMP-dependent catabolite repression is the dominant control mechanism of metabolic fluxes under glucose limitation in Escherichia coli. Nanchen A, Schicker A, Revelles O, et al.
  • Click here to see download links

  • J Bacteriol. 2009 Sep;191(17):5538-48. Metabolic flux analysis of Escherichia coli creB and arcA mutants reveals shared control of carbon catabolism under microaerobic growth conditions. Nikel PI, Zhu J, San KY, et al.
  • Click here to see download links

  • J Biol Chem. 2004 Feb;279(8):6613-9. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. Sauer U, Canonaco F, Heri S, et al.
  • Click here to see download links

  • J Biol Chem. 2006 Mar;281(12):8024-33. Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes. Fong SS, Nanchen A, Palsson BO, et al.
  • Click here to see download links

  • J Biotechnol. 2003 Mar;101(2):101-17. Metabolic flux analysis of Escherichia coli K12 grown on 13C-labeled acetate and glucose using GC-MS and powerful flux calculation method. Zhao J, Shimizu K.
  • Click here to see download links

  • J Biotechnol. 2006 Mar;122(2):254-66. Effect of lpdA gene knockout on the metabolism in Escherichia coli based on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-labeling experiments. Li M, Ho PY, Yao S,et al.
  • Click here to see download links

  • J Biotechnol. 2007 Apr;129(2):249-67. Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. Noh K, Gronke K, Luo B, et al.
  • Click here to see download links

  • J Biotechnol. 2007 Jan;128(1):93-111. Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by LC-MS/MS. Iwatani S, Van Dien S, Shimbo K, et al.
  • Click here to see download links

  • J Chromatogr A. 2007 Aug;1159(1-2):134-41. Direct measurement of isotopomer of intracellular metabolites using capillary electrophoresis time-of-flight mass spectrometry for efficient metabolic flux analysis. Toya Y, Ishii N, Hirasawa T, et al.
  • Click here to see download links

  • Metab Eng. 2003 Apr;5(2):74-85. A metabolic network analysis & NMR experiment design tool with user interface-driven model construction for depth-first search analysis. Zhu T, Phalakornkule C, Ghosh S, et al.
  • Click here to see download links

  • Metab Eng. 2013 Nov;20:49-55. COMPLETE-MFA:complementary parallel labeling experiments technique for metabolic flux analysis. Leighty RW, Antoniewicz MR.
  • Click here to see download links

  • Microb Cell Fact. 2012 Sep;11:127. Consequences of phosphoenolpyruvate:sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli. Meza E, Becker J, Bolivar F, et al.
  • Click here to see download links

  • Microbiology. 2006 Aug;152(Pt 8):2421-31. Indole-3-acetic acid regulates the central metabolic pathways in Escherichia coli. Bianco C, Imperlini E, Calogero R, et al.
  • Click here to see download links

  • Mol Syst Biol. 2011 Mar;7:477. Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli. Haverkorn van Rijsewijk BR, Nanchen A, Nallet S, et al.
  • Click here to see download links

  • Nat Protoc. 2009;4(6):878-92. (13)C-based metabolic flux analysis. Zamboni N, Fendt SM, Ruhl M, et al.
  • Click here to see download links

Geobacillus thermoglucosidasius Biotechnol Bioeng. 2009 Apr;102(5):1377-86. Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerant Geobacillus strain. Tang YJ, Sapra R, Joyner D, et al.
Geobacillus thermoglucosidasius
  • Biotechnol Bioeng. 2009 Apr;102(5):1377-86. Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerant Geobacillus strain. Tang YJ, Sapra R, Joyner D, et al.
  • Click here to see download links

Geobacter metallireducens Appl Environ Microbiol. 2007 Jun;73(12):3859-64. Flux analysis of central metabolic pathways in Geobacter metallireducens during reduction of soluble Fe(III)-nitrilotriacetic acid. Tang YJ, Chakraborty R, Martin HG, et al.
Geobacter metallireducens
  • Appl Environ Microbiol. 2007 Jun;73(12):3859-64. Flux analysis of central metabolic pathways in Geobacter metallireducens during reduction of soluble Fe(III)-nitrilotriacetic acid. Tang YJ, Chakraborty R, Martin HG, et al.
  • Click here to see download links

Gluconacetobacter xylinus Appl Microbiol Biotechnol. 2013 Jul;97(14):6189-99. Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Zhong C, Zhang GC, Liu M, et al.
Gluconacetobacter xylinus
  • Appl Microbiol Biotechnol. 2013 Jul;97(14):6189-99. Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Zhong C, Zhang GC, Liu M, et al.
  • Click here to see download links

Homo sapiens Metab Eng. 2013 Jan;15:206-17. Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells. Murphy TA, Dang CV, Young JD.
Homo sapiens
  • J Biosci Bioeng. 2011 Dec;112(6):616-23. Metabolite channeling and compartmentation in the human cell line AGE1.HN determined by 13C labeling experiments and 13C metabolic flux analysis. Niklas J, Sandig V, Heinzle E.
  • Click here to see download links

  • Metab Eng. 2013 Jan;15:206-17. Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells. Murphy TA, Dang CV, Young JD.
  • Click here to see download links

Methylobacterium extorquens AM1 Biotechnol Bioeng. 2003 Oct;84(1):45-55. Quantification of central metabolic fluxes in the facultative methylotroph methylobacterium extorquens AM1 using 13C-label tracing and mass spectrometry. Van Dien SJ, Strovas T, Lidstrom ME.
Methylobacterium extorquens AM1
  • Biotechnol Bioeng. 2003 Oct;84(1):45-55. Quantification of central metabolic fluxes in the facultative methylotroph methylobacterium extorquens AM1 using 13C-label tracing and mass spectrometry. Van Dien SJ, Strovas T, Lidstrom ME.
  • Click here to see download links

Mycobacterium tuberculosis PLoS Pathog. 2011 Jul;7(7):e1002091. 13C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation. Beste DJ, Bonde B, Hawkins N, et al.
Mycobacterium tuberculosis
  • PLoS Pathog. 2011 Jul;7(7):e1002091. 13C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation. Beste DJ, Bonde B, Hawkins N, et al.
  • Click here to see download links

Penicillium chrysogenum Biotechnol Bioeng. 2000 Jun;68(6):602-18. Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. van Gulik WM, de Laat WT, Vinke JL, et al.
Penicillium chrysogenum
  • Biotechnol Bioeng. 2000 Jun;68(6):602-18. Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. van Gulik WM, de Laat WT, Vinke JL, et al.
  • Click here to see download links

Pichia pastoris Microb Cell Fact. 2012 May;11:57. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose: methanol mixtures. Jorda J, Jouhten P, Camara E, et al.
Pichia pastoris
  • Appl Environ Microbiol. 2004 Oct;70(10):5905-11. Oxygen- and glucose-dependent regulation of central carbon metabolism in Pichia anomala. Fredlund E, Blank LM, Schnurer J, et al.
  • Click here to see download links

  • Microb Cell Fact. 2012 May;11:57. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose: methanol mixtures. Jorda J, Jouhten P, Camara E, et al.
  • Click here to see download links

  • N Biotechnol. 2014 Jan;31(1):120-32. Metabolic flux analysis of recombinant Pichia pastoris growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids. Jorda J, de Jesus SS, Peltier S, et al.
  • Click here to see download links

Pseudomonas aeruginosa PLoS One. 2014 Apr;9(4):e88368. Robustness and plasticity of metabolic pathway flux among uropathogenic isolates of Pseudomonas aeruginosa. Berger A, Dohnt K, Tielen P, et al.
Pseudomonas aeruginosa
  • PLoS One. 2014 Apr;9(4):e88368. Robustness and plasticity of metabolic pathway flux among uropathogenic isolates of Pseudomonas aeruginosa. Berger A, Dohnt K, Tielen P, et al.
  • Click here to see download links

Pseudomonas fluorescens J Bacteriol. 2005 Mar;187(5):1581-90. Experimental identification and quantification of glucose metabolism in seven bacterial species. Fuhrer T, Fischer E, Sauer U.
Pseudomonas fluorescens
  • J Bacteriol. 2005 Mar;187(5):1581-90. Experimental identification and quantification of glucose metabolism in seven bacterial species. Fuhrer T, Fischer E, Sauer U.
  • Click here to see download links

Pseudomonas putida J Biotechnol. 2009 Aug;143(2):124-9. Metabolic flux analysis of a phenol producing mutant of Pseudomonas putida S12: verification and complementation of hypotheses derived from transcriptomics. Wierckx N, Ruijssenaars HJ, de Winde JH, et al.
Pseudomonas putida
  • J Bacteriol. 2005 Mar;187(5):1581-90. Experimental identification and quantification of glucose metabolism in seven bacterial species. Fuhrer T, Fischer E, Sauer U.
  • Click here to see download links

  • J Biotechnol. 2009 Aug;143(2):124-9. Metabolic flux analysis of a phenol producing mutant of Pseudomonas putida S12: verification and complementation of hypotheses derived from transcriptomics. Wierckx N, Ruijssenaars HJ, de Winde JH, et al.
  • Click here to see download links

Rhodobacter sphaeroides J Bacteriol. 2005 Mar;187(5):1581-90. Experimental identification and quantification of glucose metabolism in seven bacterial species. Fuhrer T, Fischer E, Sauer U.
Rhodobacter sphaeroides
  • J Bacteriol. 2005 Mar;187(5):1581-90. Experimental identification and quantification of glucose metabolism in seven bacterial species. Fuhrer T, Fischer E, Sauer U.
  • Click here to see download links

Rhodopseudomonas palustris J Biol Chem. 2014 Jan;289(4):1960-70. Non-growing Rhodopseudomonas palustris increases the hydrogen gas yield from acetate by shifting from the glyoxylate shunt to the tricarboxylic acid cycle. McKinlay JB, Oda Y, Ruhl M, et al.
Rhodopseudomonas palustris
  • J Biol Chem. 2014 Jan;289(4):1960-70. Non-growing Rhodopseudomonas palustris increases the hydrogen gas yield from acetate by shifting from the glyoxylate shunt to the tricarboxylic acid cycle. McKinlay JB, Oda Y, Ruhl M, et al.
  • Click here to see download links

Saccharomyces cerevisiae Appl Microbiol Biotechnol. 2012 Aug;95(4):1001-10. Physiological characterization of recombinant Saccharomyces cerevisiae expressing the Aspergillus nidulans phosphoketolase pathway: validation of activity through 13C-based metabolic flux analysis. Papini M, Nookaew I, Siewers V, et al.
Saccharomyces cerevisiae
  • Appl Environ Microbiol. 2004 Apr;70(4):2307-17. Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Sonderegger M, Jeppsson M, Hahn-Hagerdal B, et al.
  • Click here to see download links

  • Appl Microbiol Biotechnol. 2012 Aug;95(4):1001-10. Physiological characterization of recombinant Saccharomyces cerevisiae expressing the Aspergillus nidulans phosphoketolase pathway: validation of activity through 13C-based metabolic flux analysis. Papini M, Nookaew I, Siewers V, et al.
  • Click here to see download links

  • BMC Syst Biol. 2010 Feb;4:12. Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates. Fendt SM, Sauer U.
  • Click here to see download links

  • Bioprocess Biosyst Eng. 2013 Sep;36(9):1261-5. Metabolic flux analysis of genetically engineered Saccharomyces cerevisiae that produces lactate under micro-aerobic conditions. Nagamori E, Shimizu K, Fujita H, et al.
  • Click here to see download links

  • Biotechnol Bioeng. 2004 May;86(3):251-60. Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks. Cakir T, Kirdar B, Ulgen KO.
  • Click here to see download links

  • Eukaryot Cell. 2003 Jun;2(3):599-608. Identification of in vivo enzyme activities in the cometabolism of glucose and acetate by Saccharomyces cerevisiae by using 13C-labeled substrates. dos Santos MM, Gombert AK, Christensen B, et al.
  • Click here to see download links

  • Genome Biol. 2005;6(6):R49. Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Blank LM, Kuepfer L, Sauer U.
  • Click here to see download links

  • Genome Res. 2005 Oct;15(10):1421-30. Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Kuepfer L, Sauer U, Blank LM.
  • Click here to see download links

  • J Bacteriol. 2001 Feb;183(4):1441-51. Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. Gombert AK, Moreira dos Santos M, et al.
  • Click here to see download links

  • J Biol Chem. 2004 Mar;279(10):9125-38. Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. Daran-Lapujade P, Jansen ML, Daran JM, et al.
  • Click here to see download links

  • Metab Eng. 2003 Jan;5(1):16-31. Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Pitkanen JP, Aristidou A, Salusjarvi L, et al.
  • Click here to see download links

  • Metab Eng. 2005 Sep-Nov;7(5-6):437-44. Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains. Grotkjaer T, Christakopoulos P, Nielsen J, et al.
  • Click here to see download links

  • Microb Cell Fact. 2005 Nov;4:30. Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Frick O, Wittmann C.
  • Click here to see download links

  • Yeast. 2004 Jul;21(9):769-79. Phenotypic characterization of glucose repression mutants of Saccharomyces cerevisiae using experiments with 13C-labelled glucose. Raghevendran V, Gombert AK, Christensen B, et al.
  • Click here to see download links

Scheffersomyces stipitis Microb Cell Fact. 2012 Oct;11:136. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae. Papini M, Nookaew I, Uhlen M, et al.
Scheffersomyces stipitis
  • Microb Cell Fact. 2012 Oct;11:136. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae. Papini M, Nookaew I, Uhlen M, et al.
  • Click here to see download links

Schizosaccharomyces pombe Appl Microbiol Biotechnol. 2013 Jun;97(11):5013-26. Metabolic fluxes in Schizosaccharomyces pombe grown on glucose and mixtures of glycerol and acetate. Klein T, Heinzle E, Schneider K.
Schizosaccharomyces pombe
  • Appl Microbiol Biotechnol. 2013 Jun;97(11):5013-26. Metabolic fluxes in Schizosaccharomyces pombe grown on glucose and mixtures of glycerol and acetate. Klein T, Heinzle E, Schneider K.
  • Click here to see download links

Shewanella oneidensis Appl Environ Microbiol. 2007 Feb;73(3):718-29. Shewanella oneidensis MR-1 fluxome under various oxygen conditions. Tang YJ, Hwang JS, Wemmer DE, et al.
Shewanella oneidensis
  • Appl Environ Microbiol. 2007 Feb;73(3):718-29. Shewanella oneidensis MR-1 fluxome under various oxygen conditions. Tang YJ, Hwang JS, Wemmer DE, et al.
  • Click here to see download links

Shewanella SPP. Biotechnol Bioeng. 2009 Mar;102(4):1161-9. Metabolic flux analysis of Shewanella spp. reveals evolutionary robustness in central carbon metabolism. Tang YJ, Martin HG, Dehal PS, et al.
Shewanella SPP.
  • Biotechnol Bioeng. 2009 Mar;102(4):1161-9. Metabolic flux analysis of Shewanella spp. reveals evolutionary robustness in central carbon metabolism. Tang YJ, Martin HG, Dehal PS, et al.
  • Click here to see download links

Sinorhizobium meliloti J Bacteriol. 2005 Mar;187(5):1581-90. Experimental identification and quantification of glucose metabolism in seven bacterial species. Fuhrer T, Fischer E, Sauer U.
Sinorhizobium meliloti
  • J Bacteriol. 2005 Mar;187(5):1581-90. Experimental identification and quantification of glucose metabolism in seven bacterial species. Fuhrer T, Fischer E, Sauer U.
  • Click here to see download links

Synechocystis SP. J Biotechnol. 2003 Oct;105(1-2):117-33. An improved method for statistical analysis of metabolic flux analysis using isotopomer mapping matrices with analytical expressions. Arauzo-Bravo MJ, Shimizu K.
Synechocystis SP.
  • J Biotechnol. 2003 Oct;105(1-2):117-33. An improved method for statistical analysis of metabolic flux analysis using isotopomer mapping matrices with analytical expressions. Arauzo-Bravo MJ, Shimizu K.
  • Click here to see download links

Thermus thermophilus Metab Eng. 2014 Jul;24:173-80. Metabolic network reconstruction, growth characterization and 13C-metabolic flux analysis of the extremophile Thermus thermophilus HB8. Swarup A, Lu J, DeWoody KC, et al.
Thermus thermophilus
  • Metab Eng. 2014 Jul;24:173-80. Metabolic network reconstruction, growth characterization and 13C-metabolic flux analysis of the extremophile Thermus thermophilus HB8. Swarup A, Lu J, DeWoody KC, et al.
  • Click here to see download links

Xanthomonas campestris Mol Biosyst. 2014 Jul. Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis. Schatschneider S, Huber C, Neuweger H,et al.
Xanthomonas campestris
  • Mol Biosyst. 2014 Jul. Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis. Schatschneider S, Huber C, Neuweger H,et al.
  • Click here to see download links

Zymomonas mobilis Arch Microbiol. 1999 May-Jun;171(6):371-85. Metabolic state of Zymomonas mobilis in glucose-, fructose-, and xylose-fed continuous cultures as analysed by 13C- and 31P-NMR spectroscopy. De Graaf AA, Striegel K, Wittig RM, et al.
Zymomonas mobilis
  • Arch Microbiol. 1999 May-Jun;171(6):371-85. Metabolic state of Zymomonas mobilis in glucose-, fructose-, and xylose-fed continuous cultures as analysed by 13C- and 31P-NMR spectroscopy. De Graaf AA, Striegel K, Wittig RM, et al.
  • Click here to see download links