Login   |   Regist
Species Reference
Actinobacillus succinogenes Metab Eng. 2008 Jan;10(1):55-68. 13C-metabolic flux analysis of Actinobacillus succinogenes fermentative metabolism at different NaHCO3 and H2 concentrations. McKinlay JB, Vieille C.
 
Agrobacterium tumefaciens J Bacteriol. 2005 Mar;187(5):1581-90. Experimental identification and quantification of glucose metabolism in seven bacterial species. Fuhrer T, Fischer E, Sauer U.
 
Arthrobacter sp J Biotechnol. 2013 Dec;168(4):355-61. Metabolic flux analysis of Arthrobacter sp. CGMCC 3584 for cAMP production based on 13C tracer experiments and gas chromatography-mass spectrometry. Niu H, Chen Y, Yao S,et al.
 
Ashbya gossypii J Biosci Bioeng. 2014 Aug 13. pii: S1389-1723(14)00230-8. Comparative metabolic flux analysis of an Ashbya gossypii wild type strain and a high riboflavin-producing mutant strain. Jeong BY, Wittmann C, Kato T, et al.
 
Aspergillus nidulans PLoS One. 2008 3(12):e3847. Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans. Panagiotou G, Andersen MR, Grotkjaer T, et al.
 
Aspergillus niger Metab Eng. 2000 Jan;2(1):34-41. Construction and characterization of an oxalic acid nonproducing strain of Aspergillus niger. Pedersen H, Christensen B, Hjort C, et al.
 
Bacillus megaterium J Biotechnol. 2007 Dec;132(4):385-94. Effect of different carbon sources on central metabolic fluxes and the recombinant production of a hydrolase from Thermobifida fusca in Bacillus megaterium. Furch T, Wittmann C, Wang W, et al.
 
Bacillus subtilis BMC Syst Biol. 2008 Mar;2:29. Hybrid optimization for 13C metabolic flux analysis using systems parametrized by compactification. Yang TH, Frick O, Heinzle E.
 
Basfia succiniciproducens Biotechnol Bioeng. 2013 Nov;110(11):3013-23. Systems-wide analysis and engineering of metabolic pathway fluxes in bio-succinate producing Basfia succiniciproducens. Becker J, Reinefeld J, Stellmacher R, et al.
 
Chlorobaculum tepidum J Biol Chem. 2010 Dec;285(50):39544-50. Metabolic flux analysis of the mixotrophic metabolisms in the green sulfur bacterium Chlorobaculum tepidum. Feng X, Tang KH, Blankenship RE, et al.
 
Corynebacterium glutamicum Metab Eng. 2010 Jul;12(4):392-400. 13C metabolic flux analysis for larger scale cultivation using gas chromatography-combustion-isotope ratio mass spectrometry. Yuan Y, Yang TH, Heinzle E.
 
Desulfovibrio vulgaris J Bacteriol. 2007 Feb;189(3):940-9. Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris hildenborough using gas chromatography-mass spectrometry and Fourier transform-ion cyclotron resonance mass spectrometry. Tang Y, Pingitore F, Mukhopadhyay A, et al.
 
Escherichia coli J Bacteriol. 2008 Apr;190(7):2323-30. Cyclic AMP-dependent catabolite repression is the dominant control mechanism of metabolic fluxes under glucose limitation in Escherichia coli. Nanchen A, Schicker A, Revelles O, et al.
 
Geobacillus thermoglucosidasius Biotechnol Bioeng. 2009 Apr;102(5):1377-86. Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerant Geobacillus strain. Tang YJ, Sapra R, Joyner D, et al.
 
Geobacter metallireducens Appl Environ Microbiol. 2007 Jun;73(12):3859-64. Flux analysis of central metabolic pathways in Geobacter metallireducens during reduction of soluble Fe(III)-nitrilotriacetic acid. Tang YJ, Chakraborty R, Martin HG, et al.
 
Gluconacetobacter xylinus Appl Microbiol Biotechnol. 2013 Jul;97(14):6189-99. Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Zhong C, Zhang GC, Liu M, et al.
 
Homo sapiens Metab Eng. 2013 Jan;15:206-17. Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells. Murphy TA, Dang CV, Young JD.
 
Methylobacterium extorquens AM1 Biotechnol Bioeng. 2003 Oct;84(1):45-55. Quantification of central metabolic fluxes in the facultative methylotroph methylobacterium extorquens AM1 using 13C-label tracing and mass spectrometry. Van Dien SJ, Strovas T, Lidstrom ME.
 
Mycobacterium tuberculosis PLoS Pathog. 2011 Jul;7(7):e1002091. 13C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation. Beste DJ, Bonde B, Hawkins N, et al.
 
Penicillium chrysogenum Biotechnol Bioeng. 2000 Jun;68(6):602-18. Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. van Gulik WM, de Laat WT, Vinke JL, et al.
 
Pichia pastoris Microb Cell Fact. 2012 May;11:57. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose: methanol mixtures. Jorda J, Jouhten P, Camara E, et al.
 
Pseudomonas aeruginosa PLoS One. 2014 Apr;9(4):e88368. Robustness and plasticity of metabolic pathway flux among uropathogenic isolates of Pseudomonas aeruginosa. Berger A, Dohnt K, Tielen P, et al.
 
Pseudomonas fluorescens J Bacteriol. 2005 Mar;187(5):1581-90. Experimental identification and quantification of glucose metabolism in seven bacterial species. Fuhrer T, Fischer E, Sauer U.
 
Pseudomonas putida J Biotechnol. 2009 Aug;143(2):124-9. Metabolic flux analysis of a phenol producing mutant of Pseudomonas putida S12: verification and complementation of hypotheses derived from transcriptomics. Wierckx N, Ruijssenaars HJ, de Winde JH, et al.
 
Rhodobacter sphaeroides J Bacteriol. 2005 Mar;187(5):1581-90. Experimental identification and quantification of glucose metabolism in seven bacterial species. Fuhrer T, Fischer E, Sauer U.
 
Rhodopseudomonas palustris J Biol Chem. 2014 Jan;289(4):1960-70. Non-growing Rhodopseudomonas palustris increases the hydrogen gas yield from acetate by shifting from the glyoxylate shunt to the tricarboxylic acid cycle. McKinlay JB, Oda Y, Ruhl M, et al.
 
Saccharomyces cerevisiae Appl Microbiol Biotechnol. 2012 Aug;95(4):1001-10. Physiological characterization of recombinant Saccharomyces cerevisiae expressing the Aspergillus nidulans phosphoketolase pathway: validation of activity through 13C-based metabolic flux analysis. Papini M, Nookaew I, Siewers V, et al.
 
Scheffersomyces stipitis Microb Cell Fact. 2012 Oct;11:136. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae. Papini M, Nookaew I, Uhlen M, et al.
 
Schizosaccharomyces pombe Appl Microbiol Biotechnol. 2013 Jun;97(11):5013-26. Metabolic fluxes in Schizosaccharomyces pombe grown on glucose and mixtures of glycerol and acetate. Klein T, Heinzle E, Schneider K.
 
Shewanella oneidensis Appl Environ Microbiol. 2007 Feb;73(3):718-29. Shewanella oneidensis MR-1 fluxome under various oxygen conditions. Tang YJ, Hwang JS, Wemmer DE, et al.
 
Shewanella SPP. Biotechnol Bioeng. 2009 Mar;102(4):1161-9. Metabolic flux analysis of Shewanella spp. reveals evolutionary robustness in central carbon metabolism. Tang YJ, Martin HG, Dehal PS, et al.
 
Sinorhizobium meliloti J Bacteriol. 2005 Mar;187(5):1581-90. Experimental identification and quantification of glucose metabolism in seven bacterial species. Fuhrer T, Fischer E, Sauer U.
 
Synechocystis SP. J Biotechnol. 2003 Oct;105(1-2):117-33. An improved method for statistical analysis of metabolic flux analysis using isotopomer mapping matrices with analytical expressions. Arauzo-Bravo MJ, Shimizu K.
 
Thermus thermophilus Metab Eng. 2014 Jul;24:173-80. Metabolic network reconstruction, growth characterization and 13C-metabolic flux analysis of the extremophile Thermus thermophilus HB8. Swarup A, Lu J, DeWoody KC, et al.
 
Xanthomonas campestris Mol Biosyst. 2014 Jul. Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis. Schatschneider S, Huber C, Neuweger H,et al.
 
Zymomonas mobilis Arch Microbiol. 1999 May-Jun;171(6):371-85. Metabolic state of Zymomonas mobilis in glucose-, fructose-, and xylose-fed continuous cultures as analysed by 13C- and 31P-NMR spectroscopy. De Graaf AA, Striegel K, Wittig RM, et al.